گزارش خرابی لینک
اطلاعات را وارد کنید .
گزارش انتشار نسخه جدید
اطلاعات را وارد کنید .
no-img
رهاپروژه

آمار استنباطی روشهای نمونه گیری نمره استاندارد * رهاپروژه


رهاپروژه

ادامه مطلب

آپدیت
آمار استنباطی روشهای نمونه گیری نمره استاندارد
1397-01-26
18 بازدید
گزارش نسخه جدید

آمار استنباطی روشهای نمونه گیری نمره استاندارد



آمار استنباطی

موضوعات تحقیق :

آمار استنباطی

روشهای نمونه گیری

نمره استاندارد

آمار استنباطی

مفاهیم و ابزارهای آماری به صورت صریح یا ضمنی بخشی از فرایند اکثر تحقیقات را شامل می‌شوند. نقش این مفاهیم و ابزارها را می‌توان هنگام تصمیم‌گیری در مورد گزینش آزمودنی‌ها، جایگزینی آنها در گروه‌های مختلف، توصیف داده‌های جمع‌آوری‌شده و تعمیم یافته‌های حاصل از مطالعه، مشاهده کرد. بنابراین در تحقیق رفتاری، روش‌های آماری چندین نقش ایفا می‌کنند که با هم ارتباط دارند. روش‌های آماری برای خلاصه کردن و توصیف داده‌ها دستورالعمل لازم را فراهم می‌سازند. همچنین روش‌های لازم جهت تعمیم نتایج از گروه‌های آزمودنی به گروه‌های وسیع‌تر را تهیه کرده و برای گزینش آزمودنی و جایگزینی آنها در گروه‌های مختلف و جمع‌آوری داده‌ها دستورالعمل ارائه می‌کنند.

ماهیت آمار استنباطی

نقش آمار توصیفی در واقع، جمع‌آوری، خلاصه کردن و توصیف اطلاعات کمّی به دست‌آمده از نمونه‌ها یا جامعه‌ها است. اما محقق معمولا کار خود را با توصیف اطلاعات پایان نمی‌دهد، بلکه سعی می‌کند آنچه را که از بررسی گروه نمونه به دست آورده است به گروه‌های مشابه بزرگتر تعمیم دهد. تئوری‌های روان‌شناسی از طریق تعمیم نتایج یک یا چند مطالعه به آنچه که ممکن است در مورد کل افراد جامعه صادق باشد به وجود می‌آیند. از طرف دیگر در اغلب موارد مطالعه تمام اعضای یک جامعه ناممکن است. از اینرو محقق به شیوه‌هایی احتیاج دارد که بتواند با استفاده از آنها نتایج به دست‌آمده از مطالعه گروه‌های کوچک را به گروه‌های بزرگتر تعمیم دهد. به شیوه‌هایی که از طریق آنها ویژگی‌های گروه‌های بزرگ براساس اندازه‌گیری همان ویژگی‌ها در گروه‌های کوچک استنباط می‌شود آمار استنباطی گفته می‌شود.

به بیان دیگر، در پژوهش‌های روان‌شناسی و سایر علوم رفتاری کسب اطلاعات درباره گروه‌های کوچک غالبا هدف پژوهشگر نیست، بلکه او علاقمند است که از طریق یافته‌های این گروه کوچک، اطلاعات لازم را درباره جامعه‌ای که این گروه کوچک را از آن انتخاب کرده است، کسب کند. یعنی در این پژوهش‌ها هدف پژوهشگر تعمیم نتایج به‌دست‌آمده از یک گروه کوچک به یک جامعه بزرگتر می‌باشد. این تعمیم مستلزم آن است که پژوهشگر از روش‌های آماری پیشرفته‌تری تحت عنوان “استنباط آماری” استفاده نماید.

جامعه و نمونه

در مدل استنباط آماری، فرض بر این است که می‌خواهیم در مورد یک مجموعه خیلی بزرگ(شاید نامحدود)، اطلاعات کسب کنیم(مثلا نمره پیشرفت تحصیلی درس ریاضی دانش‌آموزان کلاس پنجم دبستان در سراسر کشور). به این مجموعه، جامعه گفته می‌شود. گاه حجم جامعه آن‌قدر بزرگ است که نمی‌توان تمام آن را مطالعه نمود، لذا از کل مجموعه، یک زیرمجموعه به عنوان نمونه کل مشاهدات ممکن برای مطالعه انتخاب می‌شود. به این زیرمجموعه که شامل تعداد محدودی از اعضای جامعه است “نمونه” گفته می‌شود.

اما جهت استنباط خصوصیات جامعه از روی خصوصیات نمونه، مدل آماری ایجاب می‌کند که اعضای گروه نمونه به‌صورت تصادفی انتخاب شوند.

نمونه تصادفی به نمونه‌ای گفته می‌شود که همه اعضای جامعه به یک اندازه شانس شرکت و انتخاب شدن در آن را داشته باشند. همچنین انتخاب هر فرد مستقل از افراد دیگر صورت گیرد.

پارامتر و شاخص آماری

برای استنباط در مورد یک جامعه، محقق خصوصیات جامعه(مثلا مقادیر مرکزی یا شاخص‌های پراکندگی) را با استفاده از خصوصیات گروه نمونه توصیف می‌کند. به مقادیری که خصوصیات جامعه(مثل میانگین یا واریانس) را توصیف می‌کنند، پارامتر گفته می‌شود.

به مقادیری هم که خصوصیات نمونه را توصیف می‌کنند، آماره یا شاخص آماری می‌گویند. برای تمییز قائل شدن بین دو مفهوم پارامتر و شاخص آماری معمولا پارامترها را با حروف یونانی و شاخص‌های آماری را با حروف لاتین نمایش می‌دهند.

به عنوان مثال برای نمایش دادن میانگین جامعه از حرف یونانی(مو = µ) و برای نشان دادن میانگین گروه نمونه از حرف لاتین ۱۲X’ type=”#_x0000_t75″> (بخوانید ایکس‌بار) و برای نشان دادن واریانس جامعه از حرف یونانی ۲σ (مجذور زیگما) و برای نشان دادن واریانس نمونه از ۲S استفاده می‌شود.

ویژگی‌های برآوردکننده‌ها

از آنجا که اندازه‌گیری پارامترها(به خاطر حجم بزرگ جامعه و هزینه‌های بالا) عملا ناممکن است، این پارامترها با استفاده از آماره‌ها یا شاخص‌های آماری، برآورد می‌شوند. اما چون نمونه فقط بخش کوچکی از یک جامعه را تشکیل می‌دهد، احتمال مساوی بودن آماره‌ها با پارامترها کم است.

به عنوان مثال، اگر چه ۱۲X’ type=”#_x0000_t75″> به عنوان بهترین برآوردکننده µ به‌شمار می‌رود، ولی این برآورد معمولا با مقداری خطا همراه است. این خطا ناشی از عوامل تصادفی بی‌شماری است که محقق از وجود آنها بی‌اطلاع است.

برآوردکننده‌ها سه ویژگی عمده دارند:

·        غیر سودار بودن: برآوردکننده‌ای غیر سودار است که اگر تعداد بی‌نهایت نمونه به صورت تصادفی از یک جامعه انتخاب شود، میانگین آن در تمام نمونه‌ها با مقدار پارامتر برآورد شده برابر باشد.

·        یکنواخت بودن: منظور از یکنواخت بودن برآوردکننده آن است که هر چه تعداد یا حجم نمونه افزایش یابد، مقدار برآوردشده به مقدار پارامتر جامعه نزدیک و نزدیک‌تر گردد.

·        کارا بودن: کارآیی برآوردکننده عبارت است از مقدار تغییر در برآورد پارامترهای جامعه از یک نمونه به نمونه دیگر. یعنی دقت برآوردکننده در پارامتر جامعه را کارآیی برآوردکننده می‌نامند.

البته باید توجه داشت که یک برآوردکننده ممکن است یک، دو یا هر سه خصوصیت را دارا باشد

آزمون فرض

فرض آماری، ادعایی در مورد یک یا چند جمعیت مورد بررسی است که ممکن است درست یا نادرست باشد. به عبارت دیگر فرض آماری، یک ادعا یا گزاره‌ای در مورد توزیع یک جمعیت یا پارامتر توزیع یک متغیر تصادفی است.

فرضیه آماری، نقطه آغاز آزمون فرض است و اصولا بدون داشتن فرضیه آماری امکان انجام یک آزمون دشوار است. فرضیه آماری به دو نوع فرض صفر (H0) و فرض خلاف (HA) بیان می‌شود. فرضیه‌ای که در آزمون‌های آماری مورد آزمون قرار می‌گیرد فرضیه صفر است که همیشه حاکی از عدم وجود تفاوت می‌باشد.

اما فرض خلاف همان فرضیه پژوهشی است که می‌تواند جهت‌دار یا غیر جهت‌دار باشد. البته انتخاب فرضیه جهت‌دار دلخواه و تصادفی نیست، بلکه در صورتی فرضیه پژوهشی را می‌توان جهت‌دار تدوین کرد که تئوری یا تحقیقات قبلی شواهدی برای آن ارائه کنند

انواع خطا در استنباط آماری

پس از انجام آزمون‌های آماری، محقق در مورد رد یا عدم رد فرضیه صفر تصمیم می‌گیرد. اگر نتایج آزمون به گونه‌ای باشد که نتوان آن را رد کرد، جایی برای اثبات یا تأیید فرضیه پژوهشی باقی نمی‌ماند، اما اگر فرضیه صفر رد شود، به‌طور غیرمستقیم فرضیه پژوهشی تأیید می‌شود.

اگر فرضیه صفر در واقع صحیح باشد ولی محقق تصمیم به رد آن بگیرد خطای نوع اول رخ داده است. بر عکس اگر فرضیه صفری در واقع فرضیه‌ای غیرصحیح باشد ولی محقق آن را تأیید کند، دچار خطای نوع دوم شده است.

آزمون‌های آمار استنباطی

آزمون‌های آماری مورد استفاده جهت تجزیه و تحلیل اطلاعات به دست‌آمده از یک گروه کوچک(نمونه) و تعمیم آن به جامعه مورد نظر با توجه به مقیاس اندازه‌گیری متغیرها، به دو گروه “پارامتریک” و “ناپارامتریک” تقسیم می‌شوند. آزمون‌های پارامتریک، به تجزیه و تحلیل اطلاعات در سطح مقیاس فاصله‌ای و نسبی می‌پردازند که حداقل شاخص آماری آنها میانگین و واریانس است. در حالی که آزمون‌های ناپارامتریک، به تجزیه و تحلیل اطلاعات در سطح مقیاس اسمی ‌و رتبه‌ای می‌پردازند که شاخص آماری آنها میانه و نما است.

آزمون‌های پارامتریک آمار استنباطی

از پرکاربردترین آزمون‌های پارامتریک می‌توان به آزمون t و آزمون تحلیل واریانس اشاره کرد. آزمون t، توزیع یا در حقیقت خانواده‌ای از توزیع‌ها است که با استفاده از آنها فرضیه‌هایی که درباره نمونه در شرایط جامعه ناشناخته است، آزمون می‌شود.

اهمیت این آزمون(توزیع) در آن است که پژوهشگر را قادر می‌سازد با نمونه‌های کوچکتر(حداقل ۲ نفر) اطلاعاتی درباره جامعه به دست آورد. آزمون t شامل خانواده‌ای از توزیع‌ها است(برخلاف آزمونz ) و این‌طور فرض می‌کند که هر نمونه‌ای دارای توزیع مخصوص به خود است و شکل این توزیع از طریق محاسبه درجات آزادی مشخص می‌شود.

به عبارت دیگر توزیع t تابع درجات آزادی است و هرچه درجات آزادی افزایش پیدا کند به توزیع طبیعی نزدیکتر می‌شود.

از سوی دیگر هرچه درجات آزادی کاهش یابد، پراکندگی بیشتر می‌شود. خود درجات آزادی نیز تابعی از اندازه نمونه انتخابی هستند. هرچه تعداد نمونه بیشتر باشد بهتر است. از آزمون t می‌توان برای تجزیه و تحلیل میانگین در پژوهش‌های تک‌متغیری یک‌گروهی و دوگروهی و چند متغیری دوگروهی استفاده کرد.

زمانی که پژوهشگری بخواهد بیش از دو میانگین(بیش از دو نمونه) را با هم مقایسه کند، باید از تحلیل واریانس استفاده کند. تحلیل واریانس روشی فراگیرتر از آزمون t است و برخی پژوهشگران حتی وقتی مقایسه میانگین‌های دو نمونه مورد نظر است نیز از این روش استفاه می‌کنند.

طرح‌های متنوعی برای تحلیل واریانس وجود دارد و هر یک تحلیل آماری خاص خودش را طلب می‌کند. از جمله این طرح‌ها می‌توان به تحلیل یک‌عاملی واریانس(تحلیل واریانس یک‌راهه) و تحلیل عاملی متقاطع واریانس، تحلیل واریانس چندمتغیری، تحلیل کوواریانس یک‌متغیری و چندمتغیری و … اشاره کرد.

آزمون‌های ناپارامتریک آمار استنباطی

در پژوهش‌هایی که در سطح مقیاس‌های اسمی ‌و رتبه‌ای اجرا می‌شوند، باید از آزمون‌های ناپارامتریک برای تجزیه و تحلیل اطلاعات استفاده شود.

آزمون‌های زیادی برای این امر وجود دارد که براساس نوع تحلیل(نیکویی برازش، همسویی دو نمونه مستقل، همسویی دو نمونه وابسته، همسویی K نمونه مستقل و همسویی K نمونه وابسته) و مقیاس اندازه‌گیری می‌توان دست به انتخاب زد. از آزمون‌های مورد استفاده برای پژوهش‌ها در سطح اسمی‌ می‌توان به آزمون ۲χ، آزمون تغییر مک نمار، آزمون دقیق فیشر و آزمون کاکرن اشاره کرد.

از آزمون‌های مورد استفاده برای پژوهش‌ها در سطح رتبه‌ای می‌توان به آزمون‌های کولموگروف اسمیرونف، آزمون تقارن توزیع، آزمون علامت، آزمون میانه، آزمون Uمان ویتنی، آزمون تحلیل واریانس دو عاملی فریدمن و … اشاره کرد

خلاصه آزمونهای پارامتریک

آزمون t تک نمونه : برای آزمون فرض پیرامون میانگین یک جامعه استفاده می شود. در بیشتر پژوهش هائی که با مقیاس لیکرت انجام می شوند جهت بررسی فرضیه های پژوهش و تحلیل سوالات تخصصی مربوط به آنها از این آزمون استفاده می شود.

آزمون t وابسته : برای آزمون فرض پیرامون دو میانگین از یک جامعه استفاده می شود. برای مثال اختلاف میانگین رضایت کارکنان یک سازمان قبل و بعد از تغییر مدیریت یا زمانی که نمرات یک کلاس با پیش آزمون و پس آزمون سنجش می شود.

آزمون t دو نمونه مستقل: جهت مقایسه میانگین دو جامعه استفاده می شود. در آزمون t برای دو نمونه مستقل فرض می شود واریانس دو جامعه برابر است. برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده میشود.

آزمون t ولچ: این آزمون نیز مانند آزمون t دو نمونه جهت مقایسه میانگین دو جامعه استفاده می شود. در آزمون t ولچ فرض می شود واریانس دو جامعه برابر نیست. برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده میشود.

آزمون t هتلینگ : برای مقایسه چند میانگین از دو جامعه استفاده می شود. یعنی دو جامعه براساس میانگین چندین صفت مقایسه شوند.

تحلیل واریانس (ANOVA): از این آزمون به منظور بررسی اختلاف میانگین چند جامعه آماری استفاده می شود. برای نمونه جهت بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس سن یا تحصیلات در خصوص هر یک از فرضیه های پژوهش استفاده می شود.

تحلیل واریانس چندعاملی (MANOVA): از این آزمون به منظور بررسی اختلاف چند میانگین از چند جامعه آماری استفاده می شود.

تحلیل کوواریانس چندعاملی (MANCOVA): چنانچه در MANOVA بخواهیم اثر یک یا چند متغیر کمکی را حذف کنیم استفاده می شود.

ضریب همبستگی گشتاوری پیرسون: برای محاسبه همبستگی دو مجموعه داده استفاده می شود.

خلاصه آزمونهای ناپارامتریک

آزمون علامت تک نمونه : برای آزمون فرض پیرامون میانگین یک جامعه استفاده می شود.

آزمون علامت زوجی : برای آزمون فرض پیرامون دو میانگین از یک جامعه استفاده می شود.

ویلکاکسون : همان آزمون علامت زوجی است که در آن اختلاف نسبی تفاوت از میانگین لحاظ می شود.

مان-ویتنی: به آزمون U نیز موسوم است و جهت مقایسه میانگین دو جامعه استفاده می شود.

کروسکال-والیس: از این آزمون به منظور بررسی اختلاف میانگین چند جامعه آماری استفاده می شود. به آزمون H نیز موسوم است و تعمیم آزمون U مان-ویتنی می باشد. آزمون کروسکال-والیس معادل روش پارامتریک آنالیز واریانس تک عاملی است.

فریدمن: این آزمون معادل روش پارامتریک آنالیز واریانس دو عاملی است که در آن k تیمار به صورت تصادفی به n بلوک تخصیص داده شده اند.

نیکوئی برازش : برای مقایسه یک توزیع نظری با توزیع مشاهده شده استفاده می شود و به آزمون خی-دو یا χ² نیز موسوم است.

مدل معادلات ساختاری که در آن پژوهشگر یک مدل نظری را براساس روابط متغیرها ترسیم کرده است از همین ازمون بهره گرفته می شود.

اکنون به تبع افزایش توانمندی نرم افزارهایی مانند LISREL می توان از آن به سهولت استفاده کرد.

کولموگروف-اسمیرنف : نوعی آزمون نیکوئی برازش برای مقایسه یک توزیع نظری با توزیع مشاهده شده است.

آزمون تقارن توزیع : در این آزمون شکل توزیع مورد سوال قرار می گیرد. فرض بدیل آن است که توزیع متقارن نیست.

آزمون میانه : جهت مقایسه میانه دو جامعه استفاده می شود و برای k جامعه نیز قابل تعمیم است.

مک نمار : برای بررسی مشاهدات زوجی درباره متغیرهای دو ارزشی استفاده می شود.

آزمون Q کوکران: تعمیم آزمون مک نمار در k نمونه وابسته است.

ضریب همبستگی اسپیرمن: برای محاسبه همبستگی دو مجموعه داده که به صورت ترتیبی قرار دارند استفاده می شود.

نمونه گیری و انواع آن

اهمیت و ضرورت نمونه گیری

پس از انتخاب موضوع تحقیق و بیان مسئله٬ یکی از تصمیمیات مهمی که در پیش روی هر پژوهشگری قرار دارد انتخاب نمونه است٬ نمونه ای که باید نماینده جامعه ای باشد که پژوهشگر قصد تعمیم یافته های تحقیق خود به آن جامعه را دارد.

اگر محقق پژوهش خود را بر تمامی افراد جامعه اجرا کند روش او سرشماری خواهد بود یعنی محقق باید تمامی افراد جامعه را تک تک مورد برسی و آزمون قرار دهد.

اما چون اکثر پژوهشگران توان و زمان اجرای پژوهش بر کل جامعه را ندارند به همین دلیل پژوهش خود را محدود به نمونه کوچکی می سازند.

تعریف جامعه

“جامعه عبارت است از مجموعه ای از افراد یا واحدها که دارای حداقل یک صفت مشترک باشند و تعریف جامعه آماری باید جامع و کامل باشد”

تعریف نمونه گیری

انتخاب تعدادی از افراد٬ حوادث٬ و اشیاء از یک جامعه تعریف شده به عنوان نماینده آن جامعه .

اولین قدم در نمونه گیری تعریف جامعه مورد نظر است و هدف نوعی نمونه گیری است که تمام افراد جامعه جهت انتخاب شدن شانس برابر داشته باشند.

دلایل استفاده از نمونه گیری

۱٫      جلوگیری از اتلاف وقت محقق

۲٫      صرفه جویی در منابع مالی و هزینه

تعیین حجم نمونه

هر چه حجم یا اندازه نمونه بزرگتر باشد میزان اشتباهات در نتیجه گیری کم میشود و بر عکس هر چه تعداد نمونه محدود باشد مقدار اشتباهات زیادتر است٬ بنابر این زمانی که محقق سطح بالاتری از اطمینان یا معنی دار بودن آماری را ملاک ارزیابی اطلاعات تحقیق خود قرار میدهد لازم است حجم نمونه او بزرگتر انتخاب شود.

لذا اگر هر عضو در جامعه مادر دقیقا مشابه عضو دیگر باشد آنگاه انتخاب نمونه ای با حجم یک عضو هم کافی است. حجم نمونه باید به اندازه ای باشد که نتایج حاصل عینا با نتایج همان مطالعه در جامعه ای که نمونه از آن انتخاب شده است برابر باشد.

در شرایط ذیل انتخاب نمونه با اندازه بزرگ ضروری است :

۱٫      زمانی که در تحقیق متغیرهای کنترل نشده زیادی وجود دارند.

۲٫      هنگامیکه پیش بینی تفاوت یا همبستگی پایین است. در تحقیقاتی که انتظار داریم برای گروههای مختلف تفاوت اندکی در متغیر وابسته بدست آوریم٬ یا در مطالعاتی که به منظور تعیین ارتباط صورت می گیرند و همبستگی پایین مورد انتظار است.

۳٫      زمانی که گروههای انتخاب شده باید به زیر گروههای دیگری تقسیم شوند.

۴٫      زمانی که جامعه مورد نظر بر اساس متغیر های مورد مطالعه نامتجانس است. اگر کاملا شبیه هم باشند انتخاب نمونه ای با حجم یک نفر کافی است.

۵٫      زمانی که وسیله پایایی برای اندازه گیری متغیر وابسته وجود ندارد. پایایی ابزار اندازه گیری بدان معنا است که هر گاه این ابزار در شرایط و زمانهای مختلف بکار رود٬ آزمودنی های یکسان دارای نمره های مشابهی گردند.

اشتباهات نمونه گیری :

اشتباهات نمونه گیری از جمله عواملی هستند که ممکن است هر پژوهشگری در روند تحقیق خود مرتکب آن شود و به دو دسته زیر تقسیم میشوند :

۱٫      اشتباهات نمونه گیری

۲٫      اشتباهات غیر نمونه گیری

اشتباهات نمونه گیری :

۱٫      اشتباه ناشی از در دست نبودن فهرست کامل افراد جامعه

۲٫      اشتباه ناشی از انتخاب معدودی از افراد جامعه

۳٫      اشتباه ناشی از تحلیل آماری نامناسب

اشتباهات غیر نمونه گیری :

۱٫      اشتباه ناشی از عدم مشاهده افراد مورد مطالعه که به دو دسته تقسیم میشوند : عدم پوشش و عدم پاسخ.

۲٫      اشتباه ناشی از مشاهده نا دقیق که به سه دسته تقسیم میشوند : ابزار نادقیق٬ ثبت نادقیق داده ها و استخراج نامناسب.

ارتباط حجم نمونه با فرضیه پوچ (صفر یا آماری) :

همانطوریکه گفته شد حجم نمونه را باید تا حد امکان بزرگ انتخاب کرد زیرا حجم نمونه ارتباط بسیار نزدیکی با آزمون فرضیه پوچ در تحقیق دارد٬ بدین ترتیب که هر چه اندازه گروه نمونه بزرگتر انتخاب شود محقق با قاطعیت بیشتری فرض پوچ را که واقعا نادرست است رد میکند.

فرضیه پوچ٬ صفر یا آماری هدفی جزء رد تحقیق ندارد این فرض صریحا منکر وجود تفاوت یا رابطه و یا اثر بین دو یا چند متغیر است. به سخن دیگر این فرض گویای آن است که هر نوع تفاوت٬ رابطه یا اثر صرفا نتیجه وقایع اتفاقی یا خطاها و اشتباهات آماری و نمونه گیری است٬ به همین جهت محقق به آزمایش و آزمون این فرض می پردازد.

خطای نمونه گیری

بین ویژگیهای یک نمونه و ویژگی های جامعه ای که نمونه از آن انتخاب میشود تفاوت وجود دارد. این تفاوت برای نمونه تصادفی قابل برآورد است و به آن خطای نمونه گیری گفته می شود.

خطای نمونه گیری تابع اندازه حجم نمونه است هر چه اندازه نمونه کوچکتر باشد خطای نمونه گیری زیاد است.

انواع نمونه گیری :

شیوه های نمونه گیری مرسوم و متداول در اصل به دو بخش تقسیم میشوند :

۱٫      نمونه گیری سهمیه ای

۲٫      نمونه گیری اتفاقی یا احتمالی

نمونه گیری سهمیه ای :
اگر اعضای طبقه یک گروه بیشتر باشد پس در نمونه نیز تعدادشان بیشتر خواهد بود. از این شیوه وقتی استفاده می شود که اولا هدف تحقیق کمتر جنبه علمی داشته باشد ثانیا ساخت جامعه مورد مطالعه مشخص باشد. نمونه گیری سهمیه ای شرط قابلیت تعمیم را به اندازه لازم دارا نیست.

نمونه گیری اتفاقی یا احتمالی :
در این نوع نمونه گیری که گاه نمونه گیری تصادفی نیز خوانده می شود انتخاب افراد بر اساس ضابطه کنترل شده ای نیست و متکی به اصل “مشت نمونه خروار است” میباشد.

نمونه گیری اتفاقی خود دارای انواع گوناگون می باشد که محققین در شرایط خاص تحقیق خود آنها را ابداع کرده و به کار بسته اند که به شرح ذیل می باشند :

۱- نمونه گیری تصادفی ساده

در این نوع نمونه گیری هر یک از اعضای جامعه تعریف شده شانس برابر و مستقلی برای قرار گرفتن در نمونه دارند٬ منظور از مستقل بودن این است که انتخاب یک عضو به هیچ شکل در انتخاب سایر اعضای جامعه تاثیری ندارد. در این روش ابتدا فهرست اسامی تمامی اعضا را به دست آورده٬ سپس به هر یک از آنها نمره ای اختصاص می دهیم و با استفاده از جدول اعداد تصادفی تعداد مورد نیاز را انتخاب می کنیم.

اگر جامعه مورد مطالعه کوچک باشد از روش قرعه کشی استفاده می شود٬ یعنی اسامی افراد را بر روی یک تکه کاغذ نوشته و در داخل کیسه قرار می دهیم٬ سپس کاغذ ها را به طور تک تک خارج می کنیم تا زمانیکه حجم نمونه مورد نظر کامل شود.

نمونه گیری به روش تصادفی شانس نماینده بودن نمونه را افزایش می دهد.

۲- نمونه گیری منظم یا سیستماتیک

همانند نمونه گیری تصادفی ساده٬ نمونه گیری منظم نیز برای انتخاب یک نمونه از یک جامعه تعریف شده به کار می رود.

از این روش زمانی استفاده می شود که تمام اعضای جامعه تعریف شده قبلا به صورت تصادفی فهرست شده باشند.

به عنوان مثال صد نفر  دانش آموز از یک جامعه هزار نفری که قبلا فهرست شده اند انتخاب می کنیم٬ برای این منظور ابتدا تعداد اعضای جامعه را به تعداد اعضای نمونه مورد نیاز تقسیم می کنیم.۱۰=۱۰۰/۱۰۰۰ سپس یک عدد تصادفی چنان انتخاب می کنیم که کوچکتر یا مساوی فاصله نمونه گیری باشد.

به عنوان مثال ما عدد ۶ را انتخاب می کنیم ٬ بدین ترتیب افرادی را که در فهرست جامعه شماره های آنها به ترتیب شماره های ۶و۱۶و۲۶و۳۶و۴۶و… است انتخاب میکنیم و این را تا انتخاب ۱۰۰ نفر ادامه می دهیم.

این روش آسانتر از روش نمونه گیری تصادفی ساده است و تفاوت آن با روش نمونه گیری ساده در این است که در این روش انتخاب هر عضو مستقل از انتخاب سایر اعضاء جامعه نیست. هنگامیکه اولین عضو انتخاب شد بقیه اعضای نمونه مورد نظر به صورت خودکار تعیین می شوند.

اگر افراد جامعه به صورت تصادفی فهرست شده باشند می توان نمونه گیری منظم را به جای نمونه گیری تصادفی ساده به کار برد. اما در صورتیکه افراد جامعه با توجه به یک نظم معین بر اساس ویژگی یا ویژگی هایی فهرست شده باشند باید از نمونه گیری تصادفی ساده استفاده کرد.

۳- نمونه گیری طبقه ای

در این روش محقق مایل است نمونه تحقیقی را به گونه ای انتخاب کند که مطمئن شود زیر گروه ها با همان نسبتی که در جامعه وجود دارند به عنوان نماینده جامعه٬ در نمونه نیز حضور داشته باشند.

این نوع نمونه گیری وقتی بکار می رود که جامعه دارای ساخت همگن و متجانس نیست. یعنی در این روش درصد آزمودنی هایی که به صورت تصادفی از هر گروه انتخاب می شوند با درصد همان گروه در جامعه مورد نظر برابر است.

بنابر این اگر یک گروه به طور مثال ۸ درصد از جامعه را تشکیل می دهند همین گروه ۸ درصد از نمونه را نیز تشکیل خواهند داد.

این روش در مطالعه هایی که محقق قصد مقایسه زیر گروه های مختلفی را داشته باشد مناسب است٬ اگر در چنین شرایطی از این روش استفاده نشود هر گونه تجزیه و تحلیل اطلاعات جمع آوری شده از نمونه نامناسب و موجب نتیجه گیری غلط خواهد بود.

مثال : دانش آموزان (عالی ـ متوسط ـ ضعیف) یا اعضای یک دانشگاه (استاد ـ دانشجو ـ کارمند ـ کارگر).

به طور خلاصه در این روش محقق مطمئن است که نمونه انتخاب شده بر اساس ویژگی ها و عواملی که اساس آن طبقه بندی بوده اند٬ نماینده واقعی جامعه مورد نظر است.

۴- نمونه گیری خوشه ای

در نمونه گیری خوشه ای واحد اندازه گیری فرد نیست٬ بلکه گروهی از افراد هستند که به صورت طبیعی شکل گرفته و گروه خود را تشکیل داده اند.

این روش وقتی به کار می رود که فهرست کامل افراد جامعه در دسترس نباشد. به این منظور افراد را در دسته هایی خوشه بندی می کنند سپس از میان خوشه ها نمونه گیری به عمل می آورند و زمانی به کار می رود که انتخاب گروهی از افراد امکانپذیر و آسانتر از انتخاب افراد در یک جامعه تعریف شده باشد.

به عنوان مثال فرض می کنیم جامعه مورد نظر و تعریف شده ما عبارت است از کلیه افراد یک شهر که بیشتر از ۱۸ سال سن دارند. در این جامعه نمونه گیری تصادفی ساده و نمونمه گیری منظم زمانی میسر است که فهرست کامل تمام افراد یک شهر را با سن آنها در دست داشته باشیم٬ در غیر اینصورت به جای انتخاب فرد به عنوان واحد نمونه گیری٬ منطقه را واحد نمونه گیری قرار می دهیم و سپس به روش نمونه گیری تصادفی ساده از بین مناطق٬ منطقه یا مناطق مورد نظر را انتخاب می کنیم.

۵- نمونه گیری خوشه ای چند مرحله ای

این روش نوع دیگری از نمونه گیری خوشه ای است. زمانی که منطقه به صورت تصادفی انتخاب شد٬ می توان نمونه گیری را در داخل منطقه نیز ادامه داد.

به عنوان مثال مطالعه کننده ممکن است آدرس کلیه افرادی را که در یک منطقه زندگی می کنند داشته باشد بنابراین از بین این افراد٬ ۱۰ نفر را به صورت تصادفی انتخاب می کند. در روش نمونه گیری خوشه ای چند مرحله ای فهرست نمونه گیری دوبار و در بعضی مواقع بیش از دو بار تهیه می شود.

نمونه گیری خوشه ای برخی از مواقع در تحقیقات آموزشی به کار می رود در این نوع تحقیقات از کلاس به عنوان واحد نمونه گیری استفاده می شود.

از مزیت های عمده نمونه گیری خوشه ای جلوگیری از اتلاف وقت و صرفه جویی در منابع مالی است.

از معایب آن هم اینکه :

۱٫      دقت آن از نمونه گیری تصادفی ساده کمتر است زیرا در نمونه گیری تصادفی ساده فقط یک اشتباه وجود دارد در صورتیکه در نمونه گیری خوشه ای در هر مرحله یک اشتباه نمونه گیری وجود خواهد داشت یعنی به تعداد مراحل خطای نمونه گیری وجود دارد.

۲٫      برای داده های جمع آوری شده از این نوع نمونه گیری فرمول آسانی را نمی توان به کار برد. زیرا بکار بردن یک نوع ابزار آماری در جامعه های مختلف دقت آن را کاهش می دهد

نمره های استاندارد

اگر نمره شما در درس ریاضی ۱۶ باشد وضعیت درسی خود را چگونه ارزیابی می کنید؟

اگر در درس ریاضی ۱۴ و در درس فیزیک ۱۶ گرفته باشید در کدام درس قوی تر هستید؟

برای جواب دادن به اینگونه سوالات نمی توان تنها نمره کسب شده را لحاظ کرد بلکه باید وضعیت جامعه ای ( کلاسی) که در آن بوده ایم را نیز در نظر بگیریم.

به عنوان مثال اگر نمره ۱۶ را در کلاسی با میانگین ۱۸ و انحراف معیار ۲ کسب کرده باشیم مشخص است که نمره ما یک انحراف معیار در زیر میانگین قرار گرفته است ولی اگر میانگین کلاس ۱۴ و انحراف معیار ۱ باشد دو انحراف معیار بالای میانگین کلاس قرار گرفته ایم و جزء دانشجویان فعال به حساب می آیم.

یا در مثال دوم اگر معدل و انحراف معیار کلاس ریاضی به ترتیب ۱۳ و ۲ و معدل و انحراف معیار کلاس فیزیک به ترتیب ۱۶ و ۱ باشد آن گاه در درس ریاضی قوی تر از فیزیک عمل کرده ایم.

برای تعیین محل یک مشاهده در یک جامعه از نمره استاندارد ( standard score) یا نمره ی Z استفاده می کنیم.

برای محاسبه ی نمره استاندارد شده ابتدا نمره مشاهده شده را از میانگین کم کرده و سپس نتیجه را بر انحراف معیار تقسیم می کنیم.

نمره استاندارد نشان می دهد که مشاهدی مورد نظر جند انحراف معیار بالاتر یا پایین تر از میانگین قرار گرفته است. و

برای مقایسه مشاهدات با واحدهای اندازه گیری متفاوت یا با میانگین و انحراف معیار های مختلف از نمره استاندارد استفاده می کنیم.

با داشتن نمره های استاندارد می توان موقعیت نسبی خود را نسبت به میانگین نمرات مسخص کرد. برای انتقال نمره های خام به نمره های استاندارد،ازنمره های (استاندارد)استفاده می شود؛




موضوعات :
ترجمه

درباره نویسنده

admin 196 نوشته در رهاپروژه دارد . مشاهده تمام نوشته های

دیدگاه ها


دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *